
BioGecko                                              Vol 12 Issue 03 2023 

                                                              ISSN NO: 2230-5807                                                                                                                            
 

1406 

    A Journal for New Zealand Herpetology 

 

Uniform Convergence of Fourier Series : A Study 
 

 

Navneet1, Naveen Kumar Mani2 

1M.Sc. ( Mathematics), Chandigarh University, Mohali (140413), Punjab, India  
2Department of Mathematics, Chandigarh University, Mohali (140413), Punjab, India 

Mail :1navneettt31@gmail.com, 2naveen.e10461@cumail.in 

 

 

ABSTRACT 

The purpose of this paper is to explore the basic question of the uniform convergence of Fourier series. In this, 

we study the convergence of Fourier series. Specifically, we give some results about uniform convergence of the 

Fourier series. It is an explanation on Fourier series that converge uniformly to functions. This paper will not go 

through the deeper questions of convergence, but requires only the basic principles of introductory real analysis. 
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INTRODUCTION 

In the mathematical field of analysis, uniform convergence is a mode of convergence of functions stronger 

than pointwise convergence.  

A sequence of functions {hn} is said to converge uniformy on an interval [c,d] to a function h if for any 𝜀> 0 and 

for all p ∈ [c,d] there exists an integer N(independent of p but dependent on 𝜀) such that for all p ∈ [c,d] , 

   |hn(p) – h(p)| <𝜀, for all n ≥ N 

It is clear that every uniformly convergent sequence is pointwise convergent sequence, and the uniform limit 

function is same as the pointwise limit function. 

A Fourier series is an expansion of a periodic function h(p) in terms of an infinite sum of sines and cosines. 

Fourier series make use of the orthogonality relationships of the sine and cosine functions.  

If the numbers c0 , c1 , …, cn, …, d1 , d2 , …, dn , … are derived from a function h by means of Euler – Fourier 

formulae :  

   cn = 
1

𝜋
 ∫ 𝑓(𝑝) cos 𝑛𝑝 𝑑𝑝

𝜋

−𝜋
 , n = 0, 1, 2, …  …..(1) 

   dn = 
1

𝜋
 ∫ 𝑓(𝑝) sin 𝑛𝑝 𝑑𝑝

𝜋

−𝜋
 , n = 0, 1, 2, …  …..(2) 

then the series, 

   
1

2
 c0 = ∑ (𝑐𝑛 cos 𝑛𝑝 + 𝑑𝑛sin 𝑛𝑝)∞

𝑛=1   …..(3) 

is called the Fourier series of h or the Fourier series generated by h, and the coefficients 𝑐𝑛 , 𝑑𝑛 defined by (1) 

and (2) as the Fourier coefficients of h. 

It is to be noted that the Fourier coefficients have been obtained purely on the assumption that the function f is 

bounded and integrable on [−𝜋 , 𝜋]. 

There is nothing to suggest that the Fourier series (3) is convergent. In fact the series may not converge at all, 

and even if it converges, the sum may not be h, though it often is and there is some justification for the hope that 

the series may converge and have h for its sum. In case the Fourier series of h converges uniformly, the 

definitons of Fourier constants suggest that its sum will be h, and that h is capable of a unique Fourier series 

expansion.   

Now, we’ll state and prove some theorms about the convergence of Fourier series. Firstly, we’ll discuss about the 

Riemann-Lebesgue theorm. 
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RIEMANN – LEBESGUE THEORM :If a function 𝜑 is bounded and integrable on the interval [a, b] , then as 

n→ ∞ ,  

  𝐶𝑛 = ∫ 𝜑 cos 𝑛𝑝 𝑑𝑝 → 0
𝑑

𝑐
 , and 𝐷𝑛 = ∫ 𝜑 sin 𝑛𝑝 𝑑𝑝 → 0

𝑑

𝑐
 . 

Proof : If a and b both belong to the sae interval of the form −𝑚𝜋 ≤ 𝑝 ≤ 𝑚𝜋 (m be any positive integer), we 

define h(p) = 𝜑(𝑝) in 𝑐 ≤ 𝑝 ≤ 𝑑 , and h(p) = 0 at the remaining points of [−𝑚𝜋 , 𝑚𝜋] ; for other real p, h is 

defined so as to be periodic with period 2𝜋. Then  

  𝐶𝑛 = ∫ 𝜑 cos 𝑛𝑝 𝑑𝑝 → 0
𝑑

𝑐
 = ∫ ℎ cos 𝑛𝑝 𝑑𝑝

𝜋

−𝜋
 = 𝜋𝑐𝑛 ,  

and similarly𝐷𝑛 = 𝜋𝑑𝑛 , where 𝑐𝑛 and 𝑑𝑛 denote the fouriercofficients of h. 

Now, as we know if h is bounded and integrable on [−𝜋 , 𝜋] and if 𝑐𝑛 , 𝑑𝑛 are its Fourier coefficients, then  

    ∑ (𝑐𝑛
2 +  𝑑𝑛

2)∞
𝑛=1  converges. 

Therefore, 𝐶𝑛 , 𝐷𝑛 tend to zero. 

Again, if c and d do not lie in the same interval of the type [−𝑚𝜋 , 𝑚𝜋], we can split up the interval [c , d] into a 

finite number of sub-intervals, each of which lies in an interval of the form [−𝑚𝜋 , 𝑚𝜋]. 𝐶𝑛 and 𝐷𝑛 can be 

expressed then as a sum of a (fixed) finite number of terms each of which tends to 0, as n → ∞. Thus 𝐶𝑛 and 𝐷𝑛 

tend to 0. 

 

Now, we’ll discuss about The Riemann-Lebesgue Lemma. 

A simple application of the Weierstrass M-test will show that if  

     ∑ |𝑐𝑛 + 𝑑𝑛|∞
𝑛=1    …..(4) 

converges, then Equation (3) will converge uniformly and absolutely. As it is a necessary condition for a 

convergent series that the terms tend to zero as n tends to infinity, we can reasonably conclude that Equations (1) 

and (2) tend to zero as n tends to infinity in any situation where (4) holds. This observation turns out to be a lot 

more general than just the case where (4) holds. In fact if f(x) is absolutely integrable then (1) and (2) will tend to 

zero as n tends to infinity regardless of the limits of integration chosen. This fact is referred to as Riemann-

Lebesgue lemma. 

THEORM 1 :(The Riemann-Lebesgue Lemma) : For any function h(p) absolutely integrable on an interval 

[c,d],  

 lim
𝑛→∞

∫ 𝑓(𝑝) cos 𝑛𝑝 𝑑𝑝 → 0
𝑑

𝑐
 = lim

𝑛→∞
∫ 𝑓(𝑝) sin 𝑛𝑝 𝑑𝑝 → 0

𝑑

𝑐
 = 0 

Proof :We’ll prove the theorem for just the sin np case as the proof for cos np is essentially the same. We begin 

by first proving the theorem for proper integrals. 

We know that, 

  lim
𝑛→∞

∫ sin 𝑛𝑝 𝑑𝑝
𝑡𝑖

𝑡𝑖−1
 = lim

𝑛→∞

cos 𝑛𝑡𝑖−1− cos 𝑡𝑖

𝑛
 = 0 

We create a partition of the interval [c,d] 

c < 𝑡1 <   ... < 𝑡𝑛−1 <  d and define a step function s(p) = 
𝑖𝑛𝑓

𝑦∈[𝑡𝑖−1,𝑡𝑖]
 h(y) for all 

𝑝 ∈ (𝑡𝑖−1, 𝑡𝑖) leaving s(p) undefined for all 𝑡𝑖. Thus for any partition of [c,d]  

    lim
𝑛→∞

∫ 𝑠(𝑝) sin 𝑛𝑝 𝑑𝑝
𝑑

𝑐
 = 0 

For all 𝜖 > 0, there exists some partition of [c,d] that gives 

  ∫ |ℎ(𝑝) − 𝑠(𝑝)| 𝑑𝑝
𝑑

𝑐
 = ∫ ℎ(𝑝) − 𝑠(𝑝) 𝑑𝑝

𝑑

𝑐
<

𝜖

2
 

Hence through the triangle inequality, we find 

| ∫ ℎ(𝑝) sin 𝑛𝑝 𝑑𝑝
𝑑

𝑐
| ≤ ∫ ℎ(𝑝) − 𝑠(𝑝) 𝑑𝑝

𝑑

𝑐
 + | ∫ ℎ(𝑝) sin 𝑛𝑝 𝑑𝑝

𝑑

𝑐
| <

𝜖

2
 + 

𝜖

2
 = 𝜖 

for large enough n. 

For proper integrals, it can be seen that we only require that h should be integrable (If a proper integral of h 

exists, then the proper integral of |h| will also exist). In the case of an improper integral on [c, d], we would now 

explicitly require that h be absolutely integrable. Without loss of generality assume the improper integral in 

question is 
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    lim
𝑙→𝑑

∫ 𝑓(𝑝) sin 𝑛𝑝 𝑑𝑝
𝑙

𝑐
  …..(5) 

As f 

h is absolutely integrable, for any 𝜖> 0 we can choose some t ∈ [c, d] which gives 

    lim
𝑙→𝑑

∫ |𝑓(𝑝)|𝑑𝑝
𝑙

𝑡
<

𝜖

2
   …..(6) 

The triangle inequality and a little work will then show that the absolute value of (5) is less than or equal to the 

absolute value of a proper integral of  h(p) sin 𝑛𝑝 on [c, t] and the improper integral shown in the inequality (6). 

Thus through our proof of the Riemann-Lebesgue lemma for proper integrals and (6), we have that for any  𝜖> 0 

    |lim
𝑙→𝑑

∫ ℎ(𝑝) sin 𝑛𝑝 𝑑𝑝
𝑑

𝑐
| <  𝜖 

for large enough n, completing the proof. 

With regard to Fourier Series, the Riemann-Lebesgue lemma tells us that the terms of the series approach zero as 

n gets larger. Thus the Fourier series of any absolutely integrable function already satisfies a necessary (but not 

sufficient) condition for point-wise and uniform convergence. 

Now, we will state two lemmas which will be directly applied to proving our main theorems of uniform 

convergence. 

Lemma 1 :Let h(p) be an absolutely integrable, periodic function and let 𝜔(𝑢) be a function with a continuous 

derivative on [c, d]. Then for any  𝜖 >0, the inequality   

    |∫ 𝑓(𝑝 + 𝑢)𝜔(𝑢) sin 𝑚𝑢 𝑑𝑢
𝑑

𝑐
| <𝜖 

holds for all p provided m is large enough. 

 

Lemma 2 :The integral 

    𝐼(𝑢) = ∫
sin 𝑚𝑡

2 sin
𝑡

2

𝑑𝑡
𝑢

0
 

is bounded on [−𝜋, 𝜋]. 

 

Now, as we know our first condition for the uniform convergence of the Fourier series S(h)(p) to the function 

h(p) would necessarily be that h should  be continuous on the interval in question. As the Dirichlet conditions for 

a continuous point p hint at the role that the derivative of the function may have to play in the convergence of 

S(h)(p) to h(p). The nature of the derivative of a function does indeed play an important part in ensuring uniform 

convergence of the function’s Fourier series. Now, we’ll show that if the derivative of an absolutely integrable 

periodic h is absolutely integrable over the interval, we obtain uniform convergence. 

Consider the partial sum of Fourier series, 

  𝑆𝑘(ℎ)(𝑝) = 
1

2
 c0 + ∑ (𝑐𝑛 cos 𝑛𝑝 + 𝑑𝑛sin 𝑛𝑝)𝑘

𝑛=1   …..(7) 

Substituting Equations (1) and (2) into Equation (7) and using 

  
1

2
 + cos 𝑝 + cos 2𝑝 + … + cos 𝑛𝑝 = 

sin(𝑛+ 
1

2
)𝑝

2 sin
𝑝

2⁄
  …..(8) 

which can be derived from applying the trigonometric factor formulae to the product of the denominator on the 

right-hand side and the sums on the left-hand side, the partial sums of the Fourier series represented by Equation 

(7) can be reformulated as 

  𝑆𝑘(ℎ)(𝑝) =  
1

𝜋
∫ ℎ(𝑝 + 𝑢)

𝜋

−𝜋

sin(𝑛+ 
1

2
)𝑢

2 sin𝑢
2⁄

𝑑𝑢   …..(9) 

Also notice from integrating the left-side of Equation (8) that 

    
1

𝜋
∫

sin(𝑛+ 
1

2
)𝑢

2 sin𝑢
2⁄

𝑑𝑢
𝜋

−𝜋
= 1   …..(10) 

THEORM 2 :If h(p) is continuous and periodic and h’(p) is absolutely integrable, then Sn(h)(p) converges 

uniformly to h(p) for all p. 

Proof :Using the equations (9) and (10), 
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|𝑆𝑘(ℎ)(𝑝) − 𝑓(𝑝)| =  
1

𝜋
| ∫ [𝑓(𝑝 + 𝑢) − 𝑓(𝑝)]

𝜋

−𝜋

sin(𝑛 +  
1

2
)𝑢

2 sin 𝑢
2⁄

𝑑𝑢 | 

We now split the integral on the right-hand side into three integrals sub-intervals [−𝜋, −𝛿] , [−𝛿, 𝛿] 𝑎𝑛𝑑 [𝛿, 𝜋] 
where 0 < 𝛿 < 𝜋 . Therefore, we’ll have that |𝑆𝑘(ℎ)(𝑝) − 𝑓(𝑝)| is less than the sum of the absolute values of 

these three integral by the triangle inequality. 

Now, as we know that 
1

2 sin𝑢
2⁄
 has a continuous derivative on [−𝜋, −𝛿] 𝑎𝑛𝑑 [𝛿, 𝜋] therefore, by Lemma 1, we 

can make the absolute value of two of our three integrals as small as we please by choosing k large enough, 

regardless of p. 

For the remaining integral on [−𝛿, 𝛿] , integrating by parts gives,  

| ([ℎ(𝑝 + 𝑢) − ℎ(𝑝)] ∫
sin 𝑚𝑡

2 sin 𝑡
2⁄

𝑑𝑡)
𝑢

0

| −𝛿
𝛿 − ∫ ℎ′(𝑝 + 𝑢) ∫

sin 𝑚𝑡

sin
𝑡

2

𝑢

0

𝑑𝑡 𝑑𝑢
𝛿

−𝛿

| 

By Lemma 2, there exists K ≥ |𝐼(𝑢)| on [−𝜋, 𝜋] , thus if we also note that 𝐼(𝑢) is an even function, then the 

above will be less than  

𝐾(|ℎ(𝑝 + 𝛿) + ℎ(𝑝 − 𝛿) = 2ℎ(𝑝)| + ∫ |ℎ′(𝑝 + 𝑢)| 𝑑𝑢)
𝛿

−𝛿

 

Since h(p) is continuous and h’(p) is absolutely integrable, the above expression can be made as small as possible 

by choosing δ small enough. Putting this together means that we can make |Sk(h)(p) − h(p)| as small as possible 

by choosing n (which has no dependency on p) large enough, as claimed. 

The function f in the above theorm is continuous on the entire real line. Now, our aim is to prove uniform 

convergence to a function which is continuous on some arbitrary interval [c, d]. To do this we first make an 

observation that is important to the study of Fourier series. We’ll state a Lemma that will help us get to our final 

theorm of uniform convergence of Fourier series. 

 

Lemma 3 :(The Riemann Localization Principle) : If h(p) and q(p) are two absolutely integrable functions with 

the same period that are equal on some interval [c, d] then 

Sn(h)(p) − Sn(q)(p) 

 converges uniformly to zero for all p ∈ (c, d). 

 

Lemma 4 :If a periodic, absolutely integrable function h(p) is continuous on [c, d] with an absolutely integrable 

derivative, then the Fourier series S(h)(p) converges uniformly to h(p) on (c, d). 

 

Now, as we’ve proved various theorms and stated various lemma’s for the convergence of Fourier series, we’ll 

now discuss about how quickly the Fourier series of a function can converge uniformly. 

Firstly, we notice that if a continuous periodic function h has an absolutely integrable derivative h’ , then the 

Fourier series corresponding to h’ is given by 

  𝑆(ℎ′)(𝑝) =  ∑ 𝑘[𝑑𝑘 cos 𝑘𝑝∞
𝑘=1 − 𝑐𝑘 sin 𝑘𝑝] 

We obtained this result by integrating  

    𝑐′𝑘 =  
1

𝜋
∫ ℎ′(𝑝) cos 𝑘𝑝 𝑑𝑝

𝜋

−𝜋
 

 

    𝑑′𝑘 =  
1

𝜋
∫ ℎ′(𝑝) sin 𝑘𝑝 𝑑𝑝

𝜋

−𝜋
 

by parts. 

Therefore, we find 𝑐′𝑘 = 𝑘𝑑𝑘 and 𝑑′𝑘 = −𝑘𝑐𝑘. If the notation 𝑐𝑘
(𝑚)

 and  𝑑𝑘
(𝑚)

 to represent the Fourier coefficients 

of the absolutely integrable mth derivative of a function is allowed, we can easily check that |𝑐𝑘
(𝑚)

| = |𝑘𝑚𝑐𝑘| for 

even values of m,  |𝑘𝑚𝑑𝑘| for odd values of m. And |𝑑𝑘
(𝑚)

| = |𝑘𝑚𝑑𝑘| for even values of m and |𝑘𝑚𝑐𝑘| for odd 
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values of m, provided that m – 1 preceding derivatives are also continuous. From these considerations, we 

immediately obtain the following result. 

THEORM 3 :If a continuous function h(p) has m-1 continuous derivatives and an mth absolutely integrable 

derivative, then the Fourier coefficients of h(p) satisfy the relation 

    lim
𝑘→∞

𝑘𝑚𝑐𝑘 = lim
𝑘→∞

𝑘𝑚𝑑𝑘 = 0 

Proof :As a result of the Riemann-Lebesgue lemma, 

    lim
𝑘→∞

𝑐𝑘
(𝑚)

 = lim
𝑘→∞

𝑑𝑘
(𝑚)

= 0 

Since the (m – 1) preceding derivatives are continuous, therefore 

    lim
𝑘→∞

𝑘𝑚𝑐𝑘 = lim
𝑘→∞

𝑘𝑚𝑑𝑘 = 0 

Now, we know that if h(p) is continuous and periodic and h’(p) is absolutely integrable, then Sn(h)(p) converges 

uniformly to h(p) for all x. 

Therefore, the Fourier series of the given function h will converge uniformly to h everywhere. Since this theorm 

shows that the Fourier coefficients of h converge to 0 faster than k−m, we observe how quickly the partial sums of 

the Fourier series converge to a function. The larger the value of m for the given Fourier series such that, 

    lim
𝑘→∞

𝑘𝑚𝑐𝑘 = lim
𝑘→∞

𝑘𝑚𝑑𝑘 = 0 

the better the partial sums of the Fourier series Sn(h) approximate the function for a given n since the subsequent 

terms in the series will decay to zero more quickly. Increasing m is thus the main consideration when improving 

the convergence of a given Fourier series, that is when improving the quality of each approximation Sn(h)(p) of 

h(p). 
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